frequency_estimator.py 3.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
from __future__ import division
from numpy.fft import rfft
from numpy import argmax, mean, diff, log, nonzero
from scipy.signal import blackmanharris, correlate
from time import time
import sys
try:
    import soundfile as sf
except ImportError:
    from scikits.audiolab import flacread

12
from parabolic import parabolic
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83


def freq_from_crossings(sig, fs):
    """
    Estimate frequency by counting zero crossings
    """
    # Find all indices right before a rising-edge zero crossing
    indices = nonzero((sig[1:] >= 0) & (sig[:-1] < 0))[0]

    # Naive (Measures 1000.185 Hz for 1000 Hz, for instance)
    # crossings = indices

    # More accurate, using linear interpolation to find intersample
    # zero-crossings (Measures 1000.000129 Hz for 1000 Hz, for instance)
    crossings = [i - sig[i] / (sig[i+1] - sig[i]) for i in indices]

    # Some other interpolation based on neighboring points might be better.
    # Spline, cubic, whatever

    return fs / mean(diff(crossings))


def freq_from_fft(sig, fs):
    """
    Estimate frequency from peak of FFT
    """
    # Compute Fourier transform of windowed signal
    windowed = sig * blackmanharris(len(sig))
    f = rfft(windowed)

    # Find the peak and interpolate to get a more accurate peak
    i = argmax(abs(f))  # Just use this for less-accurate, naive version
    true_i = parabolic(log(abs(f)), i)[0]

    # Convert to equivalent frequency
    return fs * true_i / len(windowed)


def freq_from_autocorr(sig, fs):
    """
    Estimate frequency using autocorrelation
    """
    # Calculate autocorrelation and throw away the negative lags
    corr = correlate(sig, sig, mode='full')
    corr = corr[len(corr)//2:]

    # Find the first low point
    d = diff(corr)
    start = nonzero(d > 0)[0][0]

    # Find the next peak after the low point (other than 0 lag).  This bit is
    # not reliable for long signals, due to the desired peak occurring between
    # samples, and other peaks appearing higher.
    # Should use a weighting function to de-emphasize the peaks at longer lags.
    peak = argmax(corr[start:]) + start
    px, py = parabolic(corr, peak)

    return fs / px


def freq_from_HPS(sig, fs):
    """
    Estimate frequency using harmonic product spectrum (HPS)
    """
    windowed = sig * blackmanharris(len(sig))

    from pylab import subplot, plot, log, copy, show
    import matplotlib.pyplot as plt

    # harmonic product spectrum:
    c = abs(rfft(windowed))
LucasDANIELE's avatar
LucasDANIELE committed
84
    maxharms = 6
85
    resarray = []
LucasDANIELE's avatar
LucasDANIELE committed
86
    for x in range(2, maxharms):
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        a = copy(c[::x])  # Should average or maximum instead of decimating
        # max(c[::x],c[1::x],c[2::x],...)
        c = c[:len(a)]
        i = argmax(abs(c))
        true_i = parabolic(abs(c), i)[0]
        res = fs * true_i / len(windowed)
        resarray.append(res)
        #print('Pass %d: %f Hz' % (x, res))
        c *= a
        #plt.subplot(maxharms, 1, x)
        #plt.plot(log(c))
    show()
    return mean(resarray[1:3])


def hello(signal, fs):
    print('Calculating frequency from FFT:', end=' ')
    start_time = time()
    print('%f Hz' % freq_from_fft(signal, fs))
    print('Time elapsed: %.3f s\n' % (time() - start_time))
    
    print('Calculating frequency from zero crossings:', end=' ')
    start_time = time()
    print('%f Hz' % freq_from_crossings(signal, fs))
    print('Time elapsed: %.3f s\n' % (time() - start_time))
    
    print('Calculating frequency from autocorrelation:', end=' ')
    start_time = time()
    print('%f Hz' % freq_from_autocorr(signal, fs))
    print('Time elapsed: %.3f s\n' % (time() - start_time))
    
    # print('Calculating frequency from harmonic product spectrum:')
    # start_time = time()
    # freq_from_HPS(signal, fs)
    # print('Time elapsed: %.3f s\n' % (time() - start_time))